Big Data: как применять и анализировать большие данные?

Big Data: как применять и анализировать большие данные?

Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.

В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.

Термин Big Data появился в 2008 году, когда журнал Nature выпустил специальный выпуск, посвященный влиянию огромных объемов информации на науку. С тех пор стало понятно, что использование аналитики больших данных актуально для всех сфер.

Расширение информационных технологий и увеличение возможностей в области вычислительной техники привели к экспоненциальному росту информации. Традиционные методы обработки и инструменты перестали справляться с поразительным объемом информации. Информация прибывает из разных источников, таких как интернет (социальные сети, сайты, интернет-магазины, форумы, СМИ), мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем и прочее. Каждый день объемы данных продолжают увеличиваться. Для обработки, анализа и хранения таких данных необходимы специальные программные инструменты и алгоритмы, которые входят в понятие Big Data.

Анализ методов хранения данных

Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.

При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.

Один из основных и заключительных этапов работы с большими данными - это их анализ. Именно благодаря этому этапу Big Data начинает приносить реальную практическую пользу. Анализ позволяет отфильтровать все ненужное и выделить самую важную информацию, которая может быть полезна для бизнеса.

Методы анализа больших данных очень разнообразны, и их описание не входит в рамки одной статьи. Однако, мы можем рассказать об основных методах.

Обработка данных перед анализом

Один из важнейших этапов работы с большими объемами данных, это их предварительная обработка. Она включает в себя методы приведения разнородных данных к единому виду, дополнения отсутствующих данных и очистку от ненужной информации. Подготовительная обработка данных выполняется перед началом анализа и играет важную роль в получении качественных результатов.

Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.

Нейронные сети

Алгоритмы машинного обучения во многом похожи на работу человеческого мозга. Они осуществляют анализ входных данных и выдают результат в соответствии с определенным алгоритмом. Нейросети, используемые в машинном обучении, могут быть очень умными. Например, они могут распознавать лица на фотографиях или определять недобросовестные транзакции по заданным признакам.

Прогнозирование будущих событий – это важный инструмент в современном бизнесе. С помощью метода прогностического анализа можно предсказать множество различных вещей, таких как поведение клиентов, динамику продаж, финансовые показатели организации, курсы валют, сроки доставки товаров, а также ремонтопригодность оборудования и многое другое.

Основная суть метода заключается в использовании данных из прошлого для прогнозирования будущих событий. Аналитики выявляют параметры, которые в наибольшей степени влияют на результат, и на основе их анализа, делают предположения о том, что может произойти в будущем.

Прогностический анализ применяется в многих сферах бизнеса и стал незаменимым инструментом планирования и принятия решений. Правильно использованный метод позволяет предугадать различные риски и возможности, что создает преимущество в условиях жесткой конкуренции на рынке.

Статья о статистическом анализе

Современные технологии Big Data не только позволяют обрабатывать большие объемы данных, но и существенно улучшают точность статистических данных. Это объясняется тем, что более обширная выборка обеспечивает более точный и корректный анализ результатов.

Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.

Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.

Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.

Какие характеристики определяют Big Data как информацию?

Big Data - это данные, которые отличаются тремя основными свойствами, называемыми "тремя V":

Объем (Volume): Это означает, что данные должны быть в большом количестве. Эти данные уже измеряются не терабайтами, а петабайтами и эксабайтами.

Скорость (Velocity): Большие данные поступают непрерывно из разных источников, и этот процесс происходит очень быстро.

Разнообразие (Variety): Big Data - это информация разных типов, включая текстовые и графические документы, аудио- и видеофайлы, а также логи. Она может быть совсем неструктурированной или упорядоченной частично.

С ростом востребованности направления в последние годы к "трем V" были добавлены еще два признака: достоверность (Veracity) и ценность (Value). Это означает, что данные должны быть точными и приносить пользу бизнесу. Иногда выделяют еще жизнеспособность (Viability).

Одним из главных вопросов, который возникает при работе с большими данными, является то, какие преимущества они могут принести бизнесу. Анализ больших объемов информации может ускорять и улучшать различные процессы, а также помогать предсказывать тенденции рынка и поведение клиентов.

Одной из первых сфер, которые оценили все преимущества использования больших данных, стали телекоммуникационные компании, представители банковской отрасли и ретейла. Сегодня, однако, технологии компаний по работе с большими данными становятся все более востребованными во многих отраслях, включая безопасность, медицину, сельское хозяйство, промышленность энергетику, науку и государственное управление.

Конкретные примеры практического применения больших данных в разных областях также весьма показательны. В торговле, рекламе и индустрии развлечений большие данные используются, например, для минимизации рисков и улучшения качества товаров и услуг. В промышленности же данные помогают повышать экологическую и энергоэффективность.

Отрасль безопасности также не остается в стороне. Большие данные используются для анализа информации и поиска угроз в различных сферах, например, в банковской системе. Наука и медицина тоже вовлечены в работу с большими данными - они помогают специалистам лучше понимать клинические данные и улучшать научные исследования. В сельском хозяйстве данные используются для оптимизации урожаев и увеличения продуктивности, а в государственном управлении - для улучшения процессов принятия решений и работы органов власти.

Таким образом, использование больших данных может оказать значительное влияние на различные аспекты бизнеса и общественной жизни. Области применения их анализа все время расширяются, открывая новые возможности для увеличения прибыли и повышения удобства для покупателей и пользователей.

Внедрение инноваций в сфере медицины значительно расширяет возможности науки и технологий, в том числе при помощи анализа Big Data. Некоторые технологические компании уже создали интеллектуальные продукты и сервисы, с помощью которых можно решать принципиально новые задачи в медицине. Например, в Америке была разработана платформа «вычислительной биологии» для установления взаимодействия химических веществ с сигнальными рецепторами клеток организма. При использовании инструментов Big Data возможна революция в фармакологии, поскольку с ее помощью можно находить и создавать лекарственные препараты, которые точно попадают в цель и могут эффективно лечить различные заболевания.

Сегодня анализ больших данных используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP уральского региона были представлены данные, демонстрирующие, что использование Big Data в циклических медицинских тестированиях выявляет ошибки с точностью более чем на 20%, по сравнению с неавтоматизированными измерениями.

В Европе технология анализа больших данных внедряется в сферу медицины более широкими возможностями. Здесь проведено исследование, в ходе которого была проанализирована информация на 150 000 пациентов, что позволило выявить связь определенных генетических факторов с риском возникновения рака. Такой анализ выполнен благодаря использованию технологий Big Data.

Маркетологи активно применяют большие данные в своей работе. Они анализируют информацию о покупках, поисковых запросах, посещениях и лайках в социальных сетях, чтобы определить предпочтения пользователей и предложить им наиболее интересные товары. С помощью Big Data реклама становится более целевой и эффективной.

Первопроходцем в области рекомендательных сервисов на основе анализа пользовательских данных является маркетплейс Amazon. В его системе используется не только информация об истории покупок и поведении клиентов, но и о внешних факторах, таких как время года или предстоящие праздники. Благодаря такому подходу система рекомендаций приносит более трети всех продаж.

Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.

Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.

Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.

Улучшение производственных процессов с использованием Big Data

Сегодняшние производственные процессы все больше и больше опираются на сбор и анализ больших данных. Одна из главных задач таких систем - предотвращение простоев и уменьшение времени, затрачиваемого на производство. Для этого интеллектуальные системы отслеживают состояние оборудования и производят анализ данных, полученных от приборов мониторинга, средств измерения и логических контроллеров. Такой подход позволяет предотвратить поломки, выявить и исключить из производственного процесса неэффективные операции, а также снизить расходы на материалы и потребление энергии. Об этом сообщает сайт Controleng.ru.

Одним из примеров успешной реализации проектов в области сбора и анализа больших данных стало внедрение интеллектуальной платформы в аэропорту «Пулково» в 2020 году. Эта платформа управляет работой семидесяти служб компании и автоматизирует процессы, что делает управление аэропортом более прозрачным и эффективным. Оперативное получение полной информации по текущим процессам повышает качество работы предприятия. Внедрение интеллектуальной платформы также упрощает сотрудничество аэропорта с авиакомпаниями, помогает оптимизировать планирование ресурсов, в том числе техническое обслуживание и ремонт терминалов. Согласно прогнозам экспертов, изменения приведут к улучшению технического состояния оборудования на 10% и повышению скорости обращения запасов, а уровень сервиса по поставкам увеличится на 20%. Сайт АНО «Радиочастотный спектр» сообщает об этом.

Прогнозирование с помощью обработки больших объемов данных становится все более популярным. Основная идея заключается в создании моделей и прогнозировании будущих событий и поведения людей на их основе. Такой подход способен помочь в различных сферах, таких как планирование рекламных кампаний, определение спроса на услуги и товары, а также помогать взаимодействовать с клиентами.

Преимущество использования предсказательной аналитики на основе Big Data не ограничивается только сферой маркетинга и торговли. В сфере образования, например, она может помочь определить вероятность успеха учеников и эффективность программ.

Прогнозная аналитика уже нашла свое применение в авиации. Airbus планирует использовать предиктивное обслуживание к 2025 году для уменьшения случаев, когда некоторые самолеты не могут вылететь из-за выявленных неисправностей. Другая компания, Lufthansa Technik, уже внедрила платформу, которая прогнозирует сроки замены деталей.

Таким образом, использование прогнозной аналитики на основе больших объемов данных может иметь практическую пользу в различных отраслях, увеличивая эффективность процессов и помогая предсказать будущие события и тренды.

Немного статистики

Исследование, проведенное консалтинговой компанией Accenture в 2014 году, включало опрос руководителей тысячи компаний из различных стран мира. По результатам исследования 60% опрошенных компаний успешно внедрили системы анализа больших данных и были довольны их результатами. Создание новых продуктов и услуг, увеличение количества способов получения дохода, улучшение клиентского опыта и повышение лояльности клиентов были названы участниками опроса основными преимуществами технологии Big Data.

Источник

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *